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Abstract
Bound state solutions of the Schrödinger equation have been investigated for
n-dimensional (n � 2) harmonic oscillator potential decorated with any finite
number (P) of Dirac delta functions. The potential is radially symmetric and
given as V (r) = 1

2mω2r2 − h̄2

2m

∑P
i=1 σiδ(r − ri), where σis are arbitrary real

numbers, r1 < r2 < · · · < rP and ri ∈ (0, +∞). We have demonstrated
that addition of Dirac delta functions lifts the accidental degeneracies of n-
dimensional harmonic oscillator energy levels and leaves only the degeneracy
due to the radial symmetry. Explicit forms of bound state eigenfunctions and
the eigenvalue equation are given for n, l values, where n is the space dimension
and l is the degree of n-dimensional spherical harmonics. We have shown that,
for given n and l, there are a countably infinite number of bound state energy
levels which are continuous functions of ω, σis and at most P of them can be
negative.

PACS number: 03.65.−w

1. Introduction

A quantum harmonic oscillator in any dimension is exactly solvable, and its solutions are used
to describe many important physical processes such as modes of radiation, phonons, molecular
vibrations, etc [1, 2]. The Schrödinger equation for a particle of mass m in a potential with
Dirac delta functions is also frequently studied in quantum mechanics [2–5]. Solutions of
the Schrödinger equation with Dirac delta functions can be valuable for the description of
extremely short-range or contact (point) interactions [4].

Spectral properties of the Schrödinger equation for harmonic oscillator potential together
with a point interaction have been investigated by several authors [6–14]. The spectrum of
the one-dimensional harmonic oscillator with one Dirac delta function has been studied in
[6–9]. Two-dimensional systems in a uniform external magnetic field in the presence of a
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δ-impurity and a cylindrical δ-potential have been investigated in [10] and [11] respectively.
Spectral properties of three-dimensional harmonic oscillator with a point interaction have
been considered in [12–14]. Spectral analysis of interactions supported by manifolds with
codimension one has also been done in [5]. Non-relativistic quantum mechanical sphere
interactions were investigated in [15–22]. In this paper, we study the properties of bound state
solutions of the Schrödinger equation for n-dimensional (n � 2) harmonic oscillator potential
together with radially symmetric Dirac delta interactions and present some explicit results for
these bound state eigenvalues and eigenfunctions.

Magnetostatic traps used in experiments of boson gases and two-dimensional electron gas
in a uniform magnetic field are two important examples which can be described by a harmonic
potential. Ultra-thin quantum wells or impurities in these systems can be modelled by using
Dirac delta functions. Two-dimensional systems which contain Dirac delta interaction on
a closed loop together with a magnetic field for a charge particle have been studied in
[23, 24]. A model with harmonic oscillator potential decorated with any finite number
of radially symmetric Dirac delta functions at arbitrary non-zero radii can be utilized to
describe contact interactions of a particle with some materials on concentric spherical shells
or circular structures in a confining harmonic potential. Thus, our calculations can be useful
in finding the changes in the harmonic oscillator spectrum stemming from these very short-
range interactions. For an interaction VSep. = m

2

∑n
i=1 ω2

i x
2
i − h̄2

2m

∑n
i=1 σiδ(xi − ai), with

�r = (x1, x2, . . . , xn), the problem can be reduced to n independent one-dimensional systems.
The methodology of this paper can be used to obtain similar results (and related bound state
eigenfunctions) for a one-dimensional harmonic oscillator with a finite number of Dirac delta
functions [25]. The statements (a), (b) and (c) of theorem 1 of this paper are also true for the
one-dimensional case with analogous conditions.

2. Results and discussion

Our aim is to obtain and analyse bound state solutions of the Schrödinger equation for n-
dimensional (n � 2) oscillator potential together with P Dirac delta functions. The potential
is radially symmetric and given as

V (r) = 1

2
mω2r2 − h̄2

2m

P∑
i=1

σiδ(r − ri), (1)

where ω > 0, σi are arbitrary real numbers and r1 < r2 < · · · < rP with ri ∈ (0, +∞).
The factor −(

h̄2

2m

)
is for calculational convenience. Negative σi value represents repulsive

interaction while positive σi value represents attractive interaction.
The time-independent Schrödinger equation for a particle with mass m in the potential

V (x) is given as

Hωσ�(x1, . . . , xn) =
(

− h̄2

2m
∇2 + V (r)

)
�(x1, . . . , xn) = E�(x1, . . . , xn), (2)

where ∇2 = ∑n
i=1

∂2

∂x2
i

.

Since the potential depends only on r, we write the wavefunction in terms of spherical
coordinates as � = Rn,l(r)Yl,n(�), where Yl,n(�) is an n-dimensional spherical harmonic
of degree l and � = (θ1, . . . , θn−1) represents n − 1 angular coordinates [26]. Then, the
Laplacian in spherical coordinates becomes

∇2 = 1

rn−1

d

dr

(
rn−1 d(.)

dr

)
+

�LB

r2
, (3)
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where the Laplace–Beltrami operator, �LB, on the sphere, Sn−1, satisfies

�LBYl,n(�) = −l(l + n − 2)Yl,n(�), (4)

for l = 0, 1, 2, . . . . The degeneracy of Yl,n is ml,n = (2l+n−2)(l+n−3)!
l!(n−2)! .1 By using µ index for

these degenerate states, we take orthonormal set {Yl,n;µ}, for µ = 1, 2, . . . , ml,n, that is∫
Sn−1

Y ∗
l,n;µYl,n;ν d� = δµ,ν (5)

[26].
For all σis are zero, we have n-dimensional harmonic oscillator with energies E[q, l] =

E[K] = (2q + l + n
2 )h̄ω = (K + n

2 )h̄ω, where K = 0, 1, 2, . . . and q is the number nodes
of the eigenfunction with energy E[K]. By using the same form of the harmonic oscillator
spectrum, we define E = (
+ n

2 )h̄ω, where 
 = 
(ω, σ1, σ2, . . . , σp, r1, r2, . . . , rp) is a real
function of ω, σ1, σ2, . . . , r1, r2, . . . , rp. In general, 
 may not be non-negative integer for
non-zero σi values. In theorem 1, we will show that they can be even negative real numbers
for some lowest eigenvalues. Variations of r1, r2, . . . , rp will change the locations of delta
functions. We fix r1, r2, . . . , rp values and analyse the energy eigenvalues as a function of
ω, σ1, σ2, . . . , σp.

By inserting E = (
 + n
2 )h̄ω, we have the radial equation

− h̄2

2m

{
1

rn−1

d

dr

(
rn−1 d(Rn,l(r))

dr

)
− l(l + n − 2)

r2

}
Rn,l(r) +

1

2
mω2r2Rn,l(r)

− h̄2

2m

{
P∑

i=1

σiδ(r − ri)

}
Rn,l(r) =

(

 +

n

2

)
h̄ωRn,l(r), (6)

for l = 0, 1, 2, . . . and n � 2.

By using dimensionless parameter v =
√

2mω
h̄

r , we obtain

1

vn−1

d

dv

(
vn−1 d(Rn,l(v))

dv

)
− l(l + n − 2)

v2
Rn,l(v) +

{(

 +

n

2

)
− v2

4

}
Rn,l(v)

+

{
P∑

i=1

ζiδ(v − vi)

}
Rn,l(v) = 0, (7)

where vi =
√

2mω
h̄

ri and ζi = σi√
2mω

h̄

for i = 1, 2, . . . , P .

When v �= vi , equation (7) reduces to

1

vn−1

d

dv

(
vn−1 d(Rn,l(v))

dv

)
− l(l + n − 2)

v2
Rn,l(v) +

{(

 +

n

2

)
− v2

4

}
Rn,l(v) = 0. (8)

Equation (8) has two linearly independent solutions. By trying solutions of the form

Rn,l(v) = vρ e− v2

4 u(v), we get solutions

ϕA = vl e− v2

4 ψ

(
l − 


2
, l +

n

2
; v2

2

)
(9a)

and

ϕB = vl e− v2

4 φ

(
l − 


2
, l +

n

2
; v2

2

)
, (9b)

1 m0,2 = 1. This can also be obtained from the general formula by first inserting l = 0, doing cancellations and then
inserting n.
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where φ(α, γ ; z) is the confluent hypergeometric function of the first kind and ψ(α, γ ; z) =
�(1−γ )

�(1+α−γ )
φ(α, γ ; z)+ �(γ−1)

�(α)
z1−γ φ(1+α−γ, 2−γ ; z) is the confluent hypergeometric function

of the second kind. Throughout this work,α = l−

2 , γ = l + n

2 and z = v2

2 . Since φ(α, γ ; z)

and ψ(α, γ ; z) are entire functions of α, γ > 0 and z > 0, the solutions ϕA and ϕB are also
entire functions of v, l, n. (For z = 0, φ(α, γ ; 0) = 1. By using analytic continuation, ψ is
defined for integer γ values [27].) When α is a non-positive integer, �(α) becomes infinite
and ϕA, ϕB are now linearly dependent. Then, linearly independent solutions of equation (8)
will be constructed in terms of Laguerre polynomials. We will later show explicit form of two
independent solutions of equation (8) when α = 0,−1,−2, . . . .

We first consider the case for α �= 0,−1,−2, . . . . By taking v0 = 0 and vP +1 = +∞, we
define ith interval as [vi−1, vi], for i = 1, 2, . . . , P + 1. Then, for given n and l, the general
solution of equation (7) is

Rn,l(v) = aiϕA(v) + biϕB(v) when v ∈ [vi−1, vi] and i = 1, 2, . . . , P + 1. (10)

For large z values, we have φ(α, γ ; z) ≈ �(γ )

�(α)
ezz−(γ−α) and ψ(α, γ ; z) ≈ z−α . For z → 0 and

positive γ , φ(α, γ ; z) → 1 and ψ(α, γ ; z) → �(γ−1)

�(α)
z1−γ when γ �= 1 or ψ(α, γ ; z) → − ln(z)

�(α)

when γ = 1 [27]. Thus, for z = v2

2 , we find ϕA → +∞ as v → 0, and ϕB → +∞ as
v → +∞. Hence, we have to take a1 = 0 and bP +1 = 0 which lead to b1ϕB(v) for the first
interval and aP +1ϕA(v) for the (P +1)th interval as the regular solutions of equation (7). Since
ψ

(
α, γ ; v2

2

) ≈ (
v2

2

)−α
for large v values, Rn,l decays exponentially as v → +∞. Hence, the

integral I = ∫ ∞
0 (Rn,l(r))

2rn−1 dr = ∫ ∞
0 (Rn,l(v))2

(
h̄

2mω

) n
2 vn−1 dv converges. Thus, bound

states � with radial part of which is given in equation (10) are normalizable.
The continuity of the wavefunction at the boundary of ith and (i + 1)th intervals leads to

aiϕA(vi) + biϕB(vi) = ai+1ϕA(vi) + bi+1ϕB(vi). (11)

By multiplying equation (7) with vn−1dv, we integrate these equations between vi − ε

and vi + ε. Letting ε → 0+, using the continuity of the wavefunctions and cancelling vn−1
i

terms, we get

(ai+1ϕ
′
A(vi) + bi+1ϕ

′
B(vi)) − (aiϕ

′
A(vi) + biϕ

′
B(vi)) + ζi(aiφA(vi) + biφB(vi)) = 0, (12)

where ′ denotes differentiation with respect to v. By solving linear equations (11) and (12) for
ai+1 and bi+1 in terms of ai and bi , we obtain the recursion relations

ai+1 =
(

1 +
ζiϕA(vi)ϕB(vi)

Wi

)
ai +

(
ζi(ϕB(vi))

2

Wi

)
bi,

bi+1 =
(

−ζi(ϕA(vi))
2

Wi

)
ai +

(
1 − ζiϕA(vi)ϕB(vi)

Wi

)
bi, (13)

where Wi = Wi[ϕA, ϕB] = ϕA(vi)ϕ
′
B(vi) − ϕB(vi)ϕ

′
A(vi) is the Wronskian.

We define the transfer matrix Mi , and write equation (13) in terms of Mi :(
ai+1

bi+1

)
= Mi

(
ai

bi

)
=

(
1 + ζiϕA(vi )ϕB(vi )

Wi

ζi (ϕB(vi ))
2

Wi

− ζi (ϕA(vi ))
2

Wi
1 − ζiϕA(vi )ϕB(vi )

Wi

)(
ai

bi

)
. (14)

Thus, (
aP +1

bP +1

)
= MP MP−1 · · · M1

(
a1

b1

)
= X

(
a1

b1

)
, (15)

where the matrix X = (
X11 X12

X21 X22

) = MP MP−1 · · · M1 is a function of 
. Since we demand
a1 = 0 and bP +1 = 0 for regular solutions, then, for given n and l, we obtain X22(
) = 0
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which is a transcendental equation in general. The roots of the equation X22(
) = 0 will be
used to find the energy levels, E = (


 + n
2

)
h̄ω.

For ϕA and ϕB,W [ϕA, ϕB ] = 2γ �(γ )

�(α)vn−1 , we have

Mi =




1 + ζiφ(α,γ ;zi )ψ(α,γ ;zi )

�(γ )

�(α)

√
2zi

−(γ− 1
2 ) ezi

ζi [φ(α,γ ;zi )]2

�(γ )

�(α)

√
2zi

−(γ− 1
2 ) ezi

− ζi [ψ(α,γ ;zi )]2

�(γ )

�(α)

√
2zi

−(γ− 1
2 ) ezi

1 − ζiφ(α,γ ;zi )ψ(α,γ ;zi )

�(γ )

�(α)

√
2zi

−(γ− 1
2 ) ezi


 , (16)

where zi = v2
i

2 . Thus, by solving X22(
) = 0, we obtain 
 and hence Mis which in turn
determine Rn,l exactly. For a special case P = 1, we have

X22(
) = 1 − ζ1φ(α, γ ; z1)ψ(α, γ ; z1)

�(γ )

�(α)

√
2z1

−(γ− 1
2 ) ez1

= 0. (17)

Then, we get

φ

(
l − 


2
, γ ; z1

)
ψ

(
l − 


2
, γ ; z1

)
�

(
l − 


2

)
= �(γ )

√
2z1

−(γ− 1
2 ) ez1

ζ1
, (18)

which will be solved for 
 for given n, l, ω, σ1 and r1. For n = 3, l = 0, σ1 =
�

(
3
2

)√
mω
h̄

2e

φ

(
3
4 , 3

2 ;1
)
ψ

(
3
4 , 3

2 ;1
)
�

(
3
4

) and r1 =
√

h̄
mω

, one of the solutions of equation (18) is 
 = − 3
2

and hence E = 0. For σ1 = �

(
3
2

)√
mω
h̄

2e

φ

(
5
4 , 3

2 ;1
)
ψ

(
5
4 , 3

2 ;1
)
�

(
5
4

) , we get 
 = − 5
2 and hence E = −h̄ω. In

theorem 1, we will demonstrate that there are infinitively many solutions of X22(
) = 0, and
there can be at most P negative eigenvalues for P Dirac delta functions.

For zi � 1 and zi � |ζi |, we can obtain the approximate change in the energies by using
asymptotic behaviours of confluent hypergeometric functions and the equation X22(
) = 0 or
performing the first-order perturbation for the harmonic oscillator potential with the perturbing
Dirac delta interactions. Both methods give the same result. As an example, for zi � 1 and
zi � |ζi |, n = 3, l = 0, we have

�E[q, l = 0] = E[q, l = 0] −
(

2q +
3

2

)
h̄ω ≈

P∑
i=1

−2h̄ωζi

z
2q+1
i√

2q!�
(
q + 3

2

) e−zi

≈ −
(mω

h̄

)2q+ 1
2 h̄ω

q!�
(
q + 3

2

) P∑
i=1

σir
4q+2
i e− mω

h̄
r2
i . (19)

For intermediate values of |ζi | and zi or |ζi | � zi , asymptotic of confluent hypergeometric
functions or the first-order perturbation does not supply the approximate solutions of
X22(
) = 0, and numerical solutions of X22(
) = 0 should be obtained.

In tables 1 and 2, we present numerical results of some quantities that are related to the
ground state and the first excited state energies for large attractive and repulsive ζi values, i.e.
ζi = ±10.0. For one delta function case with |ζ1| = +10.0, as seen in the fifth row of table 1, the
absolute change in the ground state energy is larger for attractive(A) Dirac interactions than for
repulsive(R) delta interactions, i.e. |�Eg,A|

|�Eg,R | > 1 where |�Ex | = |Ex(ζ1 �= 0.0)−Ex(ζ1 = 0.0)|.
However, for the first excited state, |�E2,A|

|�E2,R | is larger than 1 (for z1 = 2.0, 10.0) or smaller than
1 (for z1 = 0.5, 1.0), depending on the location (or z1) of the delta function. By using
tables 1 and 2, one gets the following orderings for attractive and repulsive interactions with
|ζ1| = +10.0:
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Table 1. Some dimensionless quantities which are related to energies for one Dirac delta function
with strength ζ1 = +10.0 (attractive(A) case) or ζ1 = −10.0 (repulsive(R) case) at r = r1
(z1 = mω

h̄
r2

1 ). Here n = 3, l = 0 and Eg and E2 denote the ground state and the first excited state

energies respectively. |�Ex | = |Ex(ζ1 �= 0.0) − Ex(ζ1 = 0.0)|, where Eg(ζ1 = 0.0) = 3
2 and

E2(ζ1 = 0.0) = 2 + 3
2 .

z1 = 0.5 z1 = 1.0 z1 = 2.0 z1 = 10.0(
Eg,A

h̄ω
− 3

2

)
−26.242 −25.996 −25.496 −21.497(

Eg,R

h̄ω
− 3

2

)
0.884 1.380 1.038 0.002(

E2,A

h̄ω
− 3

2

)
1.122 1.654 1.460 0.004(

E2,R

h̄ω
− 3

2

)
3.220 2.956 2.296 2.074

|�Eg,A|
|�Eg,R | 29.69 18.84 25.56 10750

|�E2,A|
|�E2,R | 0.7197 0.3619 1.824 26.97

Table 2. Some dimensionless quantities which are related to energies for two Dirac delta functions
with strengths ζi = +10.0 (attractive(A) case) or ζi = −10.0 (repulsive(R) case) at r = ri
(zi = mω

h̄
r2
i ). Here n = 3, l = 0 and Eg and E2 denote the ground and the first excited state

energies respectively. |�Ex | = |Ex(ζ1 �= 0.0, ζ2 �= 0.0) − Ex(ζ1 = 0.0, ζ2 = 0.0)|, where
Eg(ζ1 = 0.0, ζ2 = 0.0) = 3

2 and E2(ζ1 = 0.0, ζ2 = 0.0) = 2 + 3
2 .

(z1 = 1.0, z2 = 2.0) (z1 = 1.0, z2 = 4.0) (z1 = 1.0, z2 = 10.0)(
Eg,A

h̄ω
− 3

2

)
−28.145 −25.996 −25.995(

Eg,R

h̄ω
− 3

2

)
2.272 2.692 1.418(

E2,A

h̄ω
− 3

2

)
−22.604 −24.494 −21.490(

E2,R

h̄ω
− 3

2

)
3.000 3.566 2.984

|�Eg,A|
|�Eg,R | 12.39 9.657 18.33

|�E2,A|
|�E2,R | 24.60 16.92 23.87

(a)
∣∣�Eg,A,z1=0.5

∣∣ >
∣∣�Eg,A,z1=1.0

∣∣ >
∣∣�Eg,A,z1=2.0

∣∣ >
∣∣�Eg,A,z1=10.0

∣∣
(b)

∣∣�Eg,R,z1=1.0

∣∣ >
∣∣�Eg,R,z1=2.0

∣∣ >
∣∣�Eg,R,z1=0.5

∣∣ >
∣∣�Eg,R,z1=10.0

∣∣
(c)

∣∣�E2,A,z1=10.0

∣∣ >
∣∣�E2,A,z1=0.5

∣∣ >
∣∣�E2,A,z1=2.0

∣∣ >
∣∣�E2,A,z1=1.0

∣∣
(d)

∣∣�E2,R,z1=0.5

∣∣ >
∣∣�E2,R,z1=1.0

∣∣ >
∣∣�E2,R,z1=2.0

∣∣ >
∣∣�E2,R,z1=10.0

∣∣
for one delta function, and

(e)
∣∣�Eg,A,(z1=1.0,z=2.0)

∣∣ >
∣∣�Eg,A,(z1=1.0,z=4.0)

∣∣ >
∣∣�Eg,A,(z1=1.0,z=10.0)

∣∣
(f)

∣∣�Eg,R,(z1=1.0,z=4.0)

∣∣ >
∣∣�Eg,R,(z1=1.0,z=2.0)

∣∣ >
∣∣�Eg,R,(z1=1.0,z=10.0)

∣∣
(g)

∣∣�E2,A,(z1=1.0,z=4.0)

∣∣ >
∣∣�E2,A,(z1=1.0,z=2.0)

∣∣ >
∣∣�E2,A,z1=1.0,z=10.0)

∣∣
(h)

∣∣�E2,R,(z1=1.0,z=4.0)

∣∣ >
∣∣�Eg,R,(z1=1.0,z=2.0)

∣∣ >
∣∣�Eg,R,(z1=1.0,z=10.0)

∣∣
for two delta functions. Thus, these numerical results demonstrate that in general the change
in the energy levels has a complicated dependence on the positions of Dirac delta functions.

As we vary σi values, α can take non-positive integer values for some eigenfunctions.
Then, ϕA and ϕB are linearly dependent. For α = l−


2 = −q = 0,−1,−2, . . . , we will
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construct the solution Rn,l in terms of Laguerre polynomials, L
γ−1
q by using the relations

φ(−q, γ ; z) = q!
(γ )(γ +1)···(γ +q−1)

L
γ−1
q (z) if q �= 0 and φ(0, γ ; z) = L

γ−1
0 (z) = 1 if q = 0. For

this case, one of the solutions of equation (8) is ϕ̄A = vl e− v2

4 L
γ−1
q

(
v2

2

)
. For n odd integer, the

second solution is ϕ̄B = vl e− v2

4
(

v2

2

)1−γ
φ(1 + α − γ, 2 − γ ; v2

2 ). Then, for n odd integer,

Rnl = āi ϕ̄A + b̄i ϕ̄B

= āi

{
vl e− v2

4 Lγ−1
q

(
v2

2

)}
+ b̄i

{
vl e− v2

4 φ

(
1 + α − γ, 2 − γ ; v2

2

)}
. (20)

For n even integer, the indicial equation for the differential equation (8) has

integer roots, and the second solution has the form ϕ̄B = vl e− v2

4
{
gsL

γ−1
q

(
v2

2

)
ln
(

v2

2

)
+(

v2

2

)1−γ ∑∞
i=0 bn

(
v2

2

)n}
, where the coefficients gs and bn are found by inserting the expression

in Laguerre differential equation [28].
By following the similar procedure which leads to equations (11) and (12), we obtain the

recursion relations(
āi+1

b̄i+1

)
= M̄i

(
āi

b̄i

)
=

(
1 + ζi ϕ̄A(vi )ϕ̄B (vi )

W̄i

ζi (ϕ̄B (vi ))
2

W̄i

− ζi (ϕ̄A(vi ))
2

W̄i
1 − ζi ϕ̄A(vi )ϕ̄B (vi )

W̄i

)(
āi

b̄i

)
,

where W̄i[ϕ̄A, ϕ̄B ] = �(γ−α)(1−γ )

�(γ )�(−α+1)
1

vn−1 , for γ �= 1, 2, . . . , W̄i = 1
vn−1 , for γ = 1, and

W̄i = �(γ−α)

�(γ )�(−α+1)(1−γ )
1

vn−1 , for γ = 2, 3, . . . .

We note that, given n and l, the solutions Rn,l(v) of equation (7) are non-degenerate.
This result can be obtained by using transfer matrices (theorem 1 in [29] demonstrates such
a derivation). An alternative demonstration of this result and ordering of the corresponding
eigenvalues can be deduced by using the results of Hilbert–Courant vol I [30]. Since Rn,l(v)s
are continuous and have piecewise continuous first derivatives (with finitely many finite amount
of jumps), the requirements for the applicability of the maximum–minimum property in [30]
are satisfied. By applying the results of chapter VI of Hilbert–Courant, we get that, given n
and l, the solutions Rn,l(v) of equation (7) are non-degenerate and corresponding eigenvalues
(energies) can be ordered such that the eigenvalue (energy) is higher for a bound state with
larger number of nodes. Then, by taking q as node index, we order the energies, that is

E0 < E1 < · · · < Eq < · · · . (21)

As an example, given n, l = 0 (s state), by using the spectroscopic notation ENs ≡ E[q =
N − 1, l = 0], the order of the levels is found as E1s < E2s < · · · < ENs < · · ·. By defining
fq = Eq(ω, σ1, σ2, . . . , σp) and taking (ω, σ1, σ2, . . . , σp, fq) as coordinates, we obtain a
surface in RP +2 for each eigenvalue with node index q.

For the harmonic oscillator, all bound state energies are positive. We have seen that some
of the eigenvalues ofHωσ can be zero or negative. We will prove theorem 1 about the properties
of bound state energies of the Hamiltonian Hωσ = − h̄2

2m
∇2 + 1

2mω2r2 − h̄2

2m

∑P
i=1 σiδ(r − ri)

and compare with the bound state energies of H0 = − h̄2

2m
∇2 − h̄2

2m

∑P
i=1 σiδ(r − ri).

Theorem 1. For the Hamiltonian Hωσ with arbitrary real σi and arbitrary positive ri values,
for given n and l

(a) bound state energies are continuous functions of ω, σ1, . . . , σP ,
(b) there exist countably infinite number of bound state eigenvalues,
(c) at most P eigenvalues for the bound states can be negative.
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Proof. (a) For given n and l, we define Rn,l;q as the radial part of the bound state eigenfunction
of Hωσ with q nodes. By dropping n, l subscripts, we take Rq ≡ Rn,l;q . We define energy
surface fq = Eq(ω, σ1, . . . , σP ) for the energy of bound state � = Rq(v)Yl,n;µ(�). By

Hellmann–Feynman theorem, for normalized wavefunction �
(√

2mω
h̄

r
)

of Hωσ , we have

∂Eq

∂ω
= 〈�|∂Hωσ

∂ω
|�〉 = mω

∫
τ

r2

∣∣∣∣∣�
(√

2mω

h̄
r

)∣∣∣∣∣
2

dτ

= mω

∫ +∞

0
r2

∣∣∣∣∣Rq

(√
2mω

h̄
r

)∣∣∣∣∣
2

rn−1 dr, (22)

where we have used orthonormality of Yl,n;µ and dτ represents n-dimensional ‘volume
element’. Since Rq of � decays exponentially to zero as r → +∞, the integral in equation
(22) converges. Thus, the derivative ∂Eq

∂ω
exists, and hence fq = Eq(ω, σ1, . . . , σP ) is a

continuous function of ω. Similarly,

∂Eq

∂σi

= 〈�|∂Hwσ

∂σi

|�〉 = − h̄2

2m

∣∣∣∣∣Rq

(√
2mω

h̄
ri

)∣∣∣∣∣
2

rn−1
i . (23)

Since ∂Eq

∂σi
exists, fq = Eq(ω, σ1, . . . , σP ) is also a continuous function of σi for i = 1, . . . , P .

(b) For given n and l, when σi = 0, for i = 1, . . . , P , and ω = ω0, we have the
harmonic oscillator energies, f o

q = Eq(ω0, 0, . . . , 0) = (
2q + l + n

2

)
h̄ω0 for the node index

q = 0, 1, 2, . . . . Thus, we have countably infinite number of bound state solutions with these

energies and
{
vl e− v2

4 L
γ−1
q

(
v2

2

)
Yl,n;µ

}
as the eigenfunctions. In part (a), we have shown that

Eq is a continuous function of ω, σ1, . . . , σP . Then, starting from the point
(
ω0, 0, . . . , 0, f o

q

)
and varying ω, σ1, . . . , σP , we obtain a surface fq = Eq(ω, σ1, . . . , σP ) for each q where fq is
a continuous function of (ω, σ1, . . . , σP ). Thus, for any given ω̄, σ̄1, . . . , σ̄P , we have a point
with coordinates (ω̄, σ̄1, . . . , σ̄P , f̄ q) on each surface. For bound states, equation (21) leads to
Es > Eq if s > q. Then, these surfaces do not intersect for given n and l. Hence, for any given
ω, σ1, . . . , σP , we have countably infinite number of energies Eq , where q = 0, 1, 2, . . . .

(c) We take all σi positive, i.e. all the delta functions in the potential are attractive. With
this choice, H0 will have at most P bound state solutions with the negative energies for given
n and l [29]. Assume that we have N bound states of H0 with negative energies λj , where
0 < N � P and j represents the number of nodes of the corresponding radial part of the
bound state eigenfunction.

For given n and l, we take Rj and T o
j as the exact radial (bound state) eigenfunctions

with j nodes of Hwσ and H0 respectively. Among the admissible functions Fj which satisfy
boundary conditions and have j nodes, for a Hamiltonian H,

〈
Fj |H|Fj 〉 is the minimum for

the exact eigenfunction [30]. Then, we have〈
T o

j

∣∣H0

∣∣T o
j

〉
� 〈Rj |H0|Rj 〉 � 〈Rj |Hωσ = H0 + 1

2mω2r2|Rj 〉 �
〈
T o

j

∣∣Hωσ

∣∣T o
j

〉
, (24)

which leads to

λj = Ej(0, σ1, . . . , σP ) � Ej(ω, σ1, . . . , σP ) � Ej(0, σ1, . . . , σP )

+
1

2
mω2

∫ +∞

0
r2

∣∣T o
j

∣∣2
rn−1 dr (25)

Since T o
j → c e−κr as r → +∞,

∫ +∞
0

∣∣T o
j (r)

∣∣2
rn+1 dr converges [29]. Thus,

λj � Ej(ω, σ1, . . . , σP ) � λj + Aω2, (26)

where A = 1
2m

∫ +∞
0

∣∣T o
j

∣∣2
rn+1 dr .
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Thus, for sufficiently small ω or some particular values σi > 0 such that λj < −Aω2, we
have

Ej(ω; σ1, . . . , σP ) < 0. (27)

If j index of Rj with the corresponding negative energy is bigger than P −1, then equation (26)
implies that there can be more than P bound states of H0 with negative energies. This is
impossible since there exist at most P bound states of H0 with negative energies [29]. Thus,
there are at most P negative eigenvalues for the bound states of Hωσ . The theorem is proven.

�

For two-dimensional systems with Dirac delta interactions and a magnetic field (B),
asymptotic behaviours of eigenvalues for large strengths (β) of delta functions have been
investigated, and it was shown that the nth eigenvalue has an asymptotic form λ̃n =
− β2

4 + µ(B) + O(β−1 ln β) as β → ∞ [23]. These results suggest that for sufficiently large
strengths of delta interactions, there are exactly P negative eigenvalues of the Hamiltonian
Hωσ of harmonic potential decorated with P attractive Dirac delta functions. This can be
achieved by using the procedure of the min–max principle [32] and normalized wavefunctions
�h.o.

q (r)Yl,n(�) of harmonic oscillator and Rq(r)Yl,n(�) of Hωσ . For given n, l and ω, we
first take the lowest eigenvalue harmonic oscillator wavefunction �h.o.

q=0(r)Yl,n(�) as a trial
function. Then, we have

Etr
0 = 〈

�h.o.
0

∣∣Hωσ

∣∣�h.o.
0

〉 =
(
l +

n

2

)
h̄ω −

P∑
i=1

σi

∣∣�h.o.
0 (xi)

∣∣2
.

Hence, by increasing σis, we can make Etr
0 negative for the trial wavefunction �h.o.

0 . Thus,
for σi > σi,cr (a critical value), we have at least one negative eigenvalue. We take the
normalized radial wavefunction of the lowest eigenvalue as R0. We continue the process
of the min–max principle by using trial wavefunctions ψ tr

s which are chosen to be square
integrable functions and to have exactly s nodes and ψ tr

s ∈ [R0, R1, . . . , Rs−1]⊥ for s � 1.
(Here [R0, R1, . . . , Rs−1]⊥ is the notation for the set of wavefunctions which have the property
〈ψ |Rj 〉 = 0, for j = 1, . . . , s − 1, and Rj is the radial part of the eigenfunction of Hωσ with
j nodes). Hence, we get

Etr
s = 〈

ψ tr
s

∣∣Hhar.osc.

∣∣ψ tr
s

〉 − P∑
i=1

σi

∣∣ψ tr
s (xi)

∣∣2 = Aho −
P∑

i=1

σiBi,

where Aho = 〈
ψ tr

s

∣∣Hhar.osc.

∣∣ψ tr
s

〉
is a constant for given ψ tr

s and Bi = ∣∣ψ tr
s (xi)

∣∣2
. ψ tr

s cannot
be zero for all xi values (i = 1, . . . , P ) since ψ tr

s has s nodes and P > s. Thus, at least
some of Bis are non-zero and by choosing appropriate σis, we can make Etr

s negative. Hence,
by applying the min–max principle procedure, we have at least P negative eigenvalues for
sufficiently large σis. Then, by combining this result with theorem 1(c), we obtain that there
are exactly P negative eigenvalues of Hωσ with P attractive delta functions for sufficiently
large strengths of Dirac delta functions.

Although energies of n-dimensional harmonic oscillator are not equal to each other for
same l value, they are ‘accidentally’ equal to each other for some different l values. Energy
level E[K] = (

K + n
2

)
h̄ω is

(
K+n−1

n−1

)
times degenerate for K = 0, 1, 2, . . . . By using angular

degeneracy ml,n of �, one can show that, for n � 2,(
K + n − 1

n − 1

)
=

{∑K
l=0,2,... ml,n if K is an even integer∑K
l=1,3,... ml,n if K is an odd integer,

(28)



4792 E Demiralp

where summations are taken over even or odd l values up to K. Thus, by using energy
expressions for n-dimensional harmonic oscillator, the order of levels is

(1s), (1p), (1d, 2s), (1f, 2p), (1g, 2d, 3s), . . . ,

where the states in the same parentheses are ‘accidentally’ degenerate states of n-dimensional
harmonic oscillator and the numbers in front of spectroscopic notation (s,l,d, . . . ) are shell
indices. The accidental degeneracy is due to an extra symmetry of the isotropic harmonic
oscillator which is a quadratic function of p and r. Hh.o. = p2

2m
+ 1

2mω2r2 is invariant under
any rotational transformations in n-dimensional space which are elements of n-dimensional
orthogonal group O(n)(see n = 3 case in [31].) This Hamiltonian can be written as

Hh.o. =
n∑

i=1

(
â
†
i âi +

n

2

)
h̄ω,

where â
†
i , âi are creation and annihilation operators respectively. This Hamiltonian will be

invariant under any unitary transformations of â
†
i , âi which are elements of n-dimensional

unitary group U(n). Since U(n) ⊃ O(n), we have the extra symmetry of the harmonic
oscillator Hamiltonian and accidental degeneracies occur. Only perturbations of the form
Acp

2 + Bcr
2 (Ac, Bc constants) can preserve this extra symmetry. Hence, by adding terms of

the form − h̄2

2m
σiδ(r − ri), this extra symmetry is broken. Thus, the accidental degeneracy is

lifted and only the rotational symmetry remains.
For |ζi | � 1, the first-order perturbation contribution to energy is given as

�E(1) = −
[

q!

�
(
q + l + n

2

)
]√

2h̄ω

P∑
i=1

ζiz
γ− 1

2
i

[
Lγ−1

q (zi)
]2

e−zi . (29)

For one delta function and |ζ1| � 1, we have the perturbation expansion

�E = �E(1) + �E(2) + · · · + �E(k) + · · · = a1ζ1 + a2ζ
2
1 + · · · + akζ

k
1 + · · · .

Then, for n = 3,K = 2, z1 = 1 and 0 < ζ1 � 1, by performing numerical calculations, we
get �E

(1)
1d �= 0 and

lim
ζ1→0

�E2s

�E1d
= �E

(1)
2s

�E
(1)
1d

= 0.6.

Thus, for this example, we have �E1d < �E2s for sufficiently small positive ζ1 (attractive
delta function), and hence accidental degeneracy is lifted.

3. Conclusions

In this paper, we have analysed bound state solutions of the Schrödinger equation for
n-dimensional (n � 2) harmonic oscillator potential decorated with any finite number
(P) of Dirac delta functions. The potential is radially symmetric and given as V (r) =
1
2mω2r2 − h̄2

2m

∑P
i=1 σiδ(r − ri), where σis are arbitrary real numbers, r1 < r2 < · · · < rP

and ri ∈ (0, +∞) for i = 1, 2, . . . , P . We have shown an explicit form of bound state
eigenfunctions and obtained an equation for energies. We have demonstrated that addition of
Dirac delta functions lifts the accidental degeneracies of n-dimensional harmonic oscillator
energy levels and leaves only the degeneracy due to the radial symmetry. We have proved that
for given n and l, there are countably infinite number of bound state energy levels which are
continuous functions of ω, σis and at most P of them can be negative for the potential given
above.



Bound states of n-dimensional harmonic oscillator decorated with Dirac delta functions 4793

Contact (point) interactions of a particle in a harmonic confining potential with some
impurities on concentric spherical shells or circular structures can be described by using the
model that we have investigated. Our calculations can be used to find the changes in the
harmonic oscillator spectrum due to these very short-range interactions.
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grant number 04HB301. We thank one of the referees for her/his useful suggestions which
make us to refine our paper.

References

[1] Messiah A 1999 Quantum Mechanics (New York: Dover)
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